Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Infect Control Hosp Epidemiol ; 43(11): 1610-1617, 2022 11.
Article in English | MEDLINE | ID: covidwho-1991416

ABSTRACT

OBJECTIVE: To characterize and compare severe acute respiratory coronavirus virus 2 (SARS-CoV-2)-specific immune responses in plasma and gingival crevicular fluid (GCF) from nursing home residents during and after natural infection. DESIGN: Prospective cohort. SETTING: Nursing home. PARTICIPANTS: SARS-CoV-2-infected nursing home residents. METHODS: A convenience sample of 14 SARS-CoV-2-infected nursing home residents, enrolled 4-13 days after real-time reverse transcription polymerase chain reaction diagnosis, were followed for 42 days. After diagnosis, plasma SARS-CoV-2-specific pan-Immunoglobulin (Ig), IgG, IgA, IgM, and neutralizing antibodies were measured at 5 time points, and GCF SARS-CoV-2-specific IgG and IgA were measured at 4 time points. RESULTS: All participants demonstrated immune responses to SARS-CoV-2 infection. Among 12 phlebotomized participants, plasma was positive for pan-Ig and IgG in all 12 participants. Neutralizing antibodies were positive in 11 participants; IgM was positive in 10 participants, and IgA was positive in 9 participants. Among 14 participants with GCF specimens, GCF was positive for IgG in 13 participants and for IgA in 12 participants. Immunoglobulin responses in plasma and GCF had similar kinetics; median times to peak antibody response were similar across specimen types (4 weeks for IgG; 3 weeks for IgA). Participants with pan-Ig, IgG, and IgA detected in plasma and GCF IgG remained positive throughout this evaluation, 46-55 days after diagnosis. All participants were viral-culture negative by the first detection of antibodies. CONCLUSIONS: Nursing home residents had detectable SARS-CoV-2 antibodies in plasma and GCF after infection. Kinetics of antibodies detected in GCF mirrored those from plasma. Noninvasive GCF may be useful for detecting and monitoring immunologic responses in populations unable or unwilling to be phlebotomized.


Subject(s)
COVID-19 , Pneumonia , Humans , SARS-CoV-2 , Antibody Formation , Gingival Crevicular Fluid/chemistry , Immunoglobulin M , Antibodies, Viral , Arkansas , Prospective Studies , COVID-19/diagnosis , Immunoglobulin A/analysis , Immunoglobulin G , Antibodies, Neutralizing , Nursing Homes
2.
Front Public Health ; 10: 809356, 2022.
Article in English | MEDLINE | ID: covidwho-1792881

ABSTRACT

We aimed to describe frequency of COVID-19 exposure risk factors among patients presenting for medical care at an urban, public hospital serving mostly uninsured/Medicare/Medicaid clients and risk factors associated with SARS-CoV-2 infection. Consenting, adult patients seeking care at a public hospital from August to November 2020 were enrolled in this cross-sectional investigation. Saliva, anterior nasal and nasopharyngeal swabs were collected and tested for SARS-CoV-2 using RT-PCR. Participant demographics, close contact, and activities ≤14 days prior to enrollment were collected through interview. Logistic regression was used to identify risk factors associated with testing positive for SARS-CoV-2. Among 1,078 participants, 51.8% were male, 57.0% were aged ≥50 years, 81.3% were non-Hispanic Black, and 7.6% had positive SARS-CoV-2 tests. Only 2.7% reported COVID-19 close contact ≤14 days before enrollment; this group had 6.79 adjusted odds of testing positive (95%CI = 2.78-16.62) than those without a reported exposure. Among participants who did not report COVID-19 close contact, working in proximity to ≥10 people (adjusted OR = 2.17; 95%CI = 1.03-4.55), choir practice (adjusted OR = 11.85; 95%CI = 1.44-97.91), traveling on a plane (adjusted OR = 5.78; 95%CI = 1.70-19.68), and not participating in an essential indoor activity (i.e., grocery shopping, public transit use, or visiting a healthcare facility; adjusted OR = 2.15; 95%CI = 1.07-4.30) were associated with increased odds of testing positive. Among this population of mostly Black, non-Hispanic participants seeking care at a public hospital, we found several activities associated with testing positive for SARS-CoV-2 infection in addition to close contact with a case. Understanding high-risk activities for SARS-CoV-2 infection among different communities is important for issuing awareness and prevention strategies.


Subject(s)
COVID-19 , Adult , Aged , COVID-19/diagnosis , COVID-19/epidemiology , Cross-Sectional Studies , Female , Georgia/epidemiology , Hospitals, Public , Humans , Male , Medicare , Risk Factors , SARS-CoV-2 , United States
3.
J Infect Dis ; 225(2): 229-237, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1637718

ABSTRACT

BACKGROUND: The natural history and clinical progression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can be better understood using combined serological and reverse-transcription polymerase chain reaction (RT-PCR) testing. METHODS: Nasopharyngeal swabs and serum were collected at a single time-point from patients at an urban, public hospital during August-November 2020 and tested for SARS-CoV-2 using RT-PCR, viral culture, and anti-spike pan-immunoglobulin antibody testing. Participant demographics and symptoms were collected through interview. The χ 2 and Fisher exact tests were used to identify associations between RT-PCR and serology results with presence of viable virus and frequency of symptoms. RESULTS: Among 592 participants, 129 (21.8%) had evidence of SARS-CoV-2 infection by RT-PCR or serology. Presence of SARS-CoV-2 antibodies was strongly associated with lack of viable virus (P = .016). COVID-19 symptom frequency was similar for patients testing RT-PCR positive/seronegative and patients testing RT-PCR positive/seropositive. Patients testing RT-PCR positive/seronegative reported headaches, fatigue, diarrhea, and vomiting at rates not statistically significantly different from those testing RT-PCR negative/seropositive. CONCLUSIONS: While patients testing SARS-CoV-2 seropositive were unlikely to test positive for viable virus and were therefore at low risk for forward transmission, coronavirus disease 2019 (COVID-19) symptoms were common. Paired SARS-CoV-2 RT-PCR and antibody testing provides more nuanced understanding of patients' COVID-19 status.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , Adolescent , Adult , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/immunology , Female , Humans , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Young Adult
4.
Emerg Infect Dis ; 27(8): 2081-2089, 2021.
Article in English | MEDLINE | ID: covidwho-1319585

ABSTRACT

We evaluated the performance of self-collected anterior nasal swab (ANS) and saliva samples compared with healthcare worker-collected nasopharyngeal swab specimens used to test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We used the same PCR diagnostic panel to test all self-collected and healthcare worker-collected samples from participants at a public hospital in Atlanta, Georgia, USA. Among 1,076 participants, 51.9% were men, 57.1% were >50 years of age, 81.2% were Black (non-Hispanic), and 74.9% reported >1 chronic medical condition. In total, 8.0% tested positive for SARS-CoV-2. Compared with nasopharyngeal swab samples, ANS samples had a sensitivity of 59% and saliva samples a sensitivity of 68%. Among participants tested 3-7 days after symptom onset, ANS samples had a sensitivity of 80% and saliva samples a sensitivity of 85%. Sensitivity varied by specimen type and patient characteristics. These findings can help physicians interpret PCR results for SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged, 80 and over , COVID-19 Testing , Georgia , Humans , Male , Nasopharynx , Saliva , Specimen Handling
5.
Clin Infect Dis ; 73(Suppl 1): S58-S64, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1315676

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing remains essential for early identification and clinical management of cases. We compared the diagnostic performance of 3 specimen types for characterizing SARS-CoV-2 in infected nursing home residents. METHODS: A convenience sample of 17 residents were enrolled within 15 days of first positive SARS-CoV-2 result by real-time reverse transcription polymerase chain reaction (RT-PCR) and prospectively followed for 42 days. Anterior nasal swabs (AN), oropharyngeal swabs (OP), and saliva specimens (SA) were collected on the day of enrollment, every 3 days for the first 21 days, and then weekly for 21 days. Specimens were tested for presence of SARS-CoV-2 RNA using RT-PCR and replication-competent virus by viral culture. RESULTS: Comparing the 3 specimen types collected from each participant at each time point, the concordance of paired RT-PCR results ranged from 80% to 88%. After the first positive result, SA and OP were RT-PCR-positive for ≤48 days; AN were RT-PCR-positive for ≤33 days. AN had the highest percentage of RT-PCR-positive results (21/26 [81%]) when collected ≤10 days of participants' first positive result. Eleven specimens were positive by viral culture: 9 AN collected ≤19 days following first positive result and 2 OP collected ≤5 days following first positive result. CONCLUSIONS: AN, OP, and SA were effective methods for repeated testing in this population. More AN than OP were positive by viral culture. SA and OP remained RT-PCR-positive longer than AN, which could lead to unnecessary interventions if RT-PCR detection occurred after viral shedding has likely ceased.


Subject(s)
COVID-19 , SARS-CoV-2 , Arkansas , Humans , Nursing Homes , RNA, Viral/genetics
6.
Open Forum Infect Dis ; 8(3): ofab048, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1135878

ABSTRACT

BACKGROUND: To estimate the infectious period of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in older adults with underlying conditions, we assessed duration of coronavirus disease 2019 (COVID-19) symptoms, reverse-transcription polymerase chain reaction (RT-PCR) positivity, and culture positivity among nursing home residents. METHODS: We enrolled residents within 15 days of their first positive SARS-CoV-2 test (diagnosis) at an Arkansas facility from July 7 to 15, 2020 and instead them for 42 days. Every 3 days for 21 days and then weekly, we assessed COVID-19 symptoms, collected specimens (oropharyngeal, anterior nares, and saliva), and reviewed medical charts. Blood for serology was collected on days 0, 6, 12, 21, and 42. Infectivity was defined by positive culture. Duration of culture positivity was compared with duration of COVID-19 symptoms and RT-PCR positivity. Data were summarized using measures of central tendency, frequencies, and proportions. RESULTS: We enrolled 17 of 39 (44%) eligible residents. Median participant age was 82 years (range, 58-97 years). All had ≥3 underlying conditions. Median duration of RT-PCR positivity was 22 days (interquartile range [IQR], 8-31 days) from diagnosis; median duration of symptoms was 42 days (IQR, 28-49 days). Of 9 (53%) participants with any culture-positive specimens, 1 (11%) severely immunocompromised participant remained culture-positive 19 days from diagnosis; 8 of 9 (89%) were culture-positive ≤8 days from diagnosis. Seroconversion occurred in 12 of 12 (100%) surviving participants with ≥1 blood specimen; all participants were culture-negative before seroconversion. CONCLUSIONS: Duration of infectivity was considerably shorter than duration of symptoms and RT-PCR positivity. Severe immunocompromise may prolong SARS-CoV-2 infectivity. Seroconversion indicated noninfectivity in this cohort.

7.
MMWR Morb Mortal Wkly Rep ; 69(32): 1095-1099, 2020 Aug 11.
Article in English | MEDLINE | ID: covidwho-705516

ABSTRACT

Undetected infection with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) contributes to transmission in nursing homes, settings where large outbreaks with high resident mortality have occurred (1,2). Facility-wide testing of residents and health care personnel (HCP) can identify asymptomatic and presymptomatic infections and facilitate infection prevention and control interventions (3-5). Seven state or local health departments conducted initial facility-wide testing of residents and staff members in 288 nursing homes during March 24-June 14, 2020. Two of the seven health departments conducted testing in 195 nursing homes as part of facility-wide testing all nursing homes in their state, which were in low-incidence areas (i.e., the median preceding 14-day cumulative incidence in the surrounding county for each jurisdiction was 19 and 38 cases per 100,000 persons); 125 of the 195 nursing homes had not reported any COVID-19 cases before the testing. Ninety-five of 22,977 (0.4%) persons tested in 29 (23%) of these 125 facilities had positive SARS-CoV-2 test results. The other five health departments targeted facility-wide testing to 93 nursing homes, where 13,443 persons were tested, and 1,619 (12%) had positive SARS-CoV-2 test results. In regression analyses among 88 of these nursing homes with a documented case before facility-wide testing occurred, each additional day between identification of the first case and completion of facility-wide testing was associated with identification of 1.3 additional cases. Among 62 facilities that could differentiate results by resident and HCP status, an estimated 1.3 HCP cases were identified for every three resident cases. Performing facility-wide testing immediately after identification of a case commonly identifies additional unrecognized cases and, therefore, might maximize the benefits of infection prevention and control interventions. In contrast, facility-wide testing in low-incidence areas without a case has a lower proportion of test positivity; strategies are needed to further optimize testing in these settings.


Subject(s)
Clinical Laboratory Techniques , Coronavirus Infections/prevention & control , Nursing Homes , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Aged , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Health Personnel , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Infectious Disease Transmission, Professional-to-Patient/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , United States/epidemiology
8.
MMWR Morb Mortal Wkly Rep ; 69(27): 882-886, 2020 Jul 10.
Article in English | MEDLINE | ID: covidwho-631005

ABSTRACT

Skilled nursing facilities (SNFs) are focal points of the coronavirus disease 2019 (COVID-19) pandemic, and asymptomatic infections with SARS-CoV-2, the virus that causes COVID-19, among SNF residents and health care personnel have been described (1-3). Repeated point prevalence surveys (serial testing of all residents and health care personnel at a health care facility irrespective of symptoms) have been used to identify asymptomatic infections and have reduced SARS-CoV-2 transmission during SNF outbreaks (1,3). During March 2020, the Detroit Health Department and area hospitals detected a sharp increase in COVID-19 diagnoses, hospitalizations, and associated deaths among SNF residents. The Detroit Health Department collaborated with local government, academic, and health care system partners and a CDC field team to rapidly expand SARS-CoV-2 testing and implement infection prevention and control (IPC) activities in all Detroit-area SNFs. During March 7-May 8, among 2,773 residents of 26 Detroit SNFs, 1,207 laboratory-confirmed cases of COVID-19 were identified during three periods: before (March 7-April 7) and after two point prevalence surveys (April 8-25 and April 30-May 8): the overall attack rate was 44%. Within 21 days of receiving their first positive test results, 446 (37%) of 1,207 COVID-19 patients were hospitalized, and 287 (24%) died. Among facilities participating in both surveys (n = 12), the percentage of positive test results declined from 35% to 18%. Repeated point prevalence surveys in SNFs identified asymptomatic COVID-19 cases, informed cohorting and IPC practices aimed at reducing transmission, and guided prioritization of health department resources for facilities experiencing high levels of SARS-CoV-2 transmission. With the increased availability of SARS-CoV-2 testing, repeated point prevalence surveys and enhanced and expanded IPC support should be standard tools for interrupting and preventing COVID-19 outbreaks in SNFs.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/prevention & control , Infection Control/methods , Mass Screening/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Skilled Nursing Facilities , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Humans , Michigan/epidemiology , Middle Aged , Pneumonia, Viral/epidemiology , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL